

Public Relations Office, Kyushu University 744 Motooka Nishi-ku Fukuoka, 819-0395 TEL:+81-92-802-2130 FAX:+81-92-802-2139 E-MAIL:koho@jimu.kyushu-u.ac.jp URL:http://www.kyushu-u.ac.jp

PRESS RELEASE (2018/09/12)

Technetium-98 nuclear cosmochronometer synthesized by supernova neutrinos

A large number of neutrinos are emitted from the proto-neutron star formed during an early phase of a core-collapse supernova. When these neutrinos pass through the outer layers, they partially deposit their energy in the outer layers, leading its supernova explosion. In the outer layers, some nuclides such as Tantalum-180 are newly synthesized by the neutrino-nucleus interaction. There are six neutrino species, electron neutrino, muon neutrino, tau neutrino, and their anti-neutrinos.

Previous studies have shown that the neutrino-isotopes are predominantly produced by five neutrino species except the electron anti-neutrino. If there was a neutrino-isotope synthesized predominantly by the electron anti-neutrino, one could estimate the temperature of the six neutrino species, which are important for understanding the supernova explosion mechanism.

At the present study, first, it was found the possibility that ⁹⁸Tc may be synthesized by the neutrino process.

Next, the expected ⁹⁸Tc abundance was calculated using a supernova explosion model with the neutrino-nucleus interactions involved.

As a result, it was found that ⁹⁸Tc neutrino-process nucleosynthesis is the large contribution (~ 20%) from charged current reactions with electron anti-neutrinos. It was shown that if the initial abundances of ⁹⁸Tc were to be precisely measured, the ⁹⁸Tc nuclear cosmochronometer could be used to evaluate the initial abundance of ⁹⁸Tc and the duration time from the last core-collapse supernova to the formation of the solar system.

The present result is also important for the average temperatures of the six neutrinos and astronomical observation of the electron anti-neutrino.

This work will be published in Physical Review Letters.

Figure 2.

Substances formed in supernova are drawn together into the proto-solar system

Reference

Authors:	Takehito Hayakawa, Heamin Ko, Myung-Ki Cheoun, Motohiko Kusakabe,
	Toshitaka Kajino, Mark D. Usang, Satoshi Chiba, Ko Nakamura, Alexey
	Tolstov, Ken'ichi Nomoto, Masa-aki Hashimoto, Masaomi Ono, Toshihiko
	Kawano, and Grant J. Mathews
Title of original	Short-Lived Radioisotope $^{98}\mathrm{Tc}$ Synthesized by the Supernova Neutrino Process
paper	
Journal:	Physical Review Letters
DOI:	10.1103/PhysRevLett.121.102701
Affiliations:	Japan and National Astronomical Observatory of Japan, Soongsil
	University, Beihang University, Beihang University, Tokyo Institute of
	Technology, Fukuoka University, The University of Tokyo, Kyushu
	University, RIKEN, Los Alamos National Laboratory, University of Notre
	Dame

[Further information]

Professor Satoshi Chiba Research Laboratory for Nuclear Reactors, Tokyo Institute of Technolory Email: <u>chiba.satoshi@nr.titech.ac.jp</u> Tel: +81-3-5734-3066

[Contact]

Public Relations Section, Tokyo Institute of Technology Tel: +81-3-5734-2975 Email: <u>media@jim.titech.ac.jp</u>