

PRESS RELEASE

12 名古屋大学

2025 年 1 月 31 日 理化学研究所 名古屋大学 九州大学

チオフェン縮環ナノベルトの合成に成功

-光電子デバイスや極性材料などの応用に期待-

概要

理化学研究所(理研)開拓研究本部伊丹分子創造研究室の伊丹健一郎主任研究 員(名古屋大学トランスフォーマティブ生命分子研究所(WPI-ITbM)主任研究 者)、名古屋大学トランスフォーマティブ生命分子研究所の八木亜樹子特任准教 授、名古屋大学大学院理学研究科の周戸大季博士後期課程学生(研究当時)、九 州大学大学院工学研究院の君塚信夫主幹教授らの国際共同研究グループは、チ オフェン^[1]を骨格内に組み込んだ芳香族ナノベルト^[2]であるチオフェン縮環^[3]ナ ノベルト(チオフェンベルト)の合成に初めて成功しました。

チオフェンベルトは、結晶中で同一方向かつ柱状に積層する一方、金属表面で は 2 次元状に単層を形成します。さらに、チオフェン骨格の導入効果により低 温でリン光発光を示しました。

このようなチオフェンベルトのユニークな性質は、光電子デバイスや極性材 料など、さまざまな応用につながるものと期待されます。

本研究は、科学雑誌『Nature Communications』オンライン版(2月3日付: 日本時間2月3日)に掲載されました。

本研究で開発したチオフェン縮環ナノベルト

背景

芳香族ナノベルトは、短いカーボンナノチューブ^[4]と見なせる構造をしており、 70年近くにわたって理論化学者だけでなく合成化学者や物理化学者の関心を集 めてきた化合物群です。伊丹主任研究員らが2017年にカーボンナノベルトの合 成を報告した^{注1)}ことを皮切りに、今や多くの研究グループがさまざまなカーボ ンナノベルトや関連する芳香族ナノベルトを報告しています。これら芳香族ナ ノベルトは有機エレクトロニクスや超分子化学などの分野で応用が期待されて おり、近年ではナノベルト類が単分子デバイスとしての機能を持つことも明ら かになってきました^{注2)}。また、有機エレクトロニクス分野において縮環チオフ ェンは p 型有機半導体^[5]、分子性導体、発光材料の基本骨格として広く用いられ ています。従って、芳香族ナノベルトと縮環チオフェンを融合したチオフェン縮 環ナノベルト(チオフェンベルト)は、まさに次世代材料としての機能が期待さ れる分子です。

伊丹主任研究員らは、独自に開発したカーボンナノリング^[2]である部分フッ素 化シクロパラフェニレン^{注3)}の炭素-フッ素結合に対して1段階の硫黄架橋反応 (硫黄原子が結合して橋を架けるような分子内反応)を施すことで一挙にチオ フェン骨格を組み込めると考え、設計、合成、物性測定に挑みました。

注 1)"Synthesis of a carbon nanobelt" Guillaume Povie, Yasutomo Segawa, Taishi Nishihara, Yuhei Miyauchi, Kenichiro Itami, *Science* 2017, 356, 172–175.

注 2)"Highly efficient charge transport across carbon nanobelts" Junfeng Lin, Shengda Wang, Fan Zhang, Bowen Yang, Pingwu Du, Chuanfeng Chen,Yaping Zang, Daoben Zhu, *Sci. Adv.* 2022, 8, eade4692.

注 3) "Half-substituted fluorocycloparaphenylenes with high symmetry: synthesis, properties and derivatization to densely substituted carbon nanorings" Hiroki Shudo, Motonobu Kuwayama, Yasutomo Segawa, Akiko Yagi, Kenichiro Itami, *Chem. Commun.* 2023, 59, 13494–13497.

研究手法と成果

チオフェンベルトを実際に合成する前に、設計したチオフェンベルトの構造 と「ひずみエネルギー」(平らなベンゼン環⁽⁾を曲げることで生じるエネルギー) を自然科学研究機構岡崎共通研究施設計算科学研究センターを利用して計算科 学的解析によってシミュレーションしました(図1A)。チオフェンベルトの構造 はベンゼン環とチオフェン環が縮環した繰り返し構造によって構成されますが、 この構成ユニット数(n)によって形状が変化することが分かりました。nが大 きくなるにつれて、順にコーン型(円すいを輪切りにした形)、フラット型、サ ドル型へと形状が変化することが予測されました。またコーン型からフラット 型への変化に伴って、ひずみエネルギーが徐々に小さくなり、サドル型ではわず かに大きくなることが分かりました。今回の研究では、このコーン型形状のチオ フェンベルトの合成を試みました。

伊丹主任研究員らは、独自に開発した「部分フッ素化シクロパラフェニレン (F16[8]CPP、F18[9]CPP)」を前駆体として合成し、これらの炭素-フッ素結合 に対して硫黄架橋反応を施すことで構成ユニット数 8 個および 9 個から成るチ オフェンベルトを効率的かつ短段階で合成しました(図 1B)。

図1 チオフェンベルトのひずみエネルギーと合成

(A)計算科学的解析でシミュレーションしたチオフェンベルトにおける「ひずみエネルギー」と構造。
サイズ(構成ユニット数(n))によって、コーン型、フラット型、サドル型と異なる形状が予測され、今回はコーン型の合成を行った。ユニット数(n)は「[n]チオフェンベルト」のように表記される。
(B)チオフェンベルトの合成スキーム。テトラフルオロビフェニルを出発物質にして、ニッケル(Ni)および金(Au)錯体を触媒として、ナノリングである部分フッ素化シクロパラフェニレンをつくり、それを硫黄架橋反応でチオフェンベルトを作製する。

X線結晶構造解析⁽⁷⁾によってチオフェンベルトの構造決定を行った結果、その 構造に由来して大きな双極子モーメント⁽⁸⁾を持つことが明らかになりました(図 2A、B)。また、図 2C にある通り、チオフェンベルトは、結晶中で分子が全て 同じ向きに配列して柱状構造を構築する興味深い性質を持つことが分かりまし た。いくつかの溶媒を用いて結晶化を検討したところ、結晶化した全ての溶媒で 類似した分子配列となり、1分子で双極子を持つチオフェンベルトが向きをそろ えて分子配列した極性結晶であることが示唆されました。

加えて、チオフェンベルトの光物性について調査すると、チオフェンベルトの 剛直性を反映した光の吸収、蛍光、および-196°Cの低温下でリン光発光の性質 を持つことが分かりました。君塚主幹教授らによる時間分解リン光測定によっ て、低温下でのリン光が長寿命であることが明らかとなりました。

3

行 品,名古屋大学

X線結晶構造解析によって明らかにした [8]チオフェンベルト(左)と[9]チオフェンベルト(右)の分子構造

[9]チオフェンベルトの 静電ポテンシャルマップと双極子モーメント

[8]チオフェンベルトと[9]チオフェンベルトの結晶中における分子配列 (それぞれ結晶化溶媒は、順にジクロロメタンとクロロベンゼン)

図2 チオフェンベルトの構造的特徴

(A) X 線結晶構造解析によって明らかになったチオフェンベルトの構造。炭素原子(灰色)、硫黄原子(黄 色)、水素原子(白色)で表す。

(B)計算科学によって明らかになったチオフェンベルトの静電ポテンシャルマップと双極子モーメント。 双極子モーメントは、分子の上側のみに集まった硫黄原子の効果によるもので、1 分子としては大きな値 である。「デバイ」は双極子モーメントの単位。赤色が濃い部分ほどマイナスの電荷が集まっており、分子 の上下で赤色と青色に分かれて(分極して)いる。

(C)チオフェンベルトの結晶中における分子配列。全てのチオフェンベルトが同じ向きにそろって柱状に 配列しており、結晶自体が極性を持つ。

チオフェンベルトは硫黄原子を上側のみに集めた特殊な構造であり、金属表 面との相互作用を知るため、ミュンスター大学のハリー・メーニッヒ教授らと共 に走査型トンネル顕微鏡^[9]を使って金属表面上での配列挙動を調べました。金属 は金(Au(111)面:(111)はミラー指数と呼ばれ、金属原子をある方向に揃えて切 り出した表面であることを示す)および銅(Cu(111)面)を用いました。チオフ ェンベルトは、金表面にできた段差に対して1次元(線)状に配列した状態、銅 表面では2次元状に集合した厚さ1分子のシートのような状態が、それぞれ観 察できました(図3左)。

また、ハイデルベルク大学のサイード・アミルジャレイヤー教授らによる顕微 鏡像のシミュレーションを利用することで、チオフェンベルトは、金表面では硫 黄原子を下向きにして段差部分に集合した状態、銅表面では硫黄原子を上側に 向けて集合した状態、がいずれも安定していました(図3右)。

銅Cu(111)表面での配列

計算によってシミュレートされた銅Cu(111)表面での配列

図3 チオフェンベルトの金属表面での配列とシミュレーションによる配列イメージ

(A) 走査型トンネル顕微鏡による金属表面でのチオフェンベルトの配列。ドーナッツのように見えるの がチオフェンベルト。金表面では段差に1次元(線)状に配列し、銅表面では2次元状に広がって並んで いる。

(B)計算科学によってシミュレートされたチオフェンベルトの配列イメージ。炭素原子(灰色)、硫黄原 子(黄色)と水素原子(白色)から成るチオフェンベルトは、金や銅の表面上にあり(左)、黒っぽい輪 (中)や白い輪(右)に見える。また、金表面では1次元かつ硫黄を下向きにして並び、銅表面では2次 元かつ硫黄を上向きにして分子が配列していることが分かる。

今後の期待

本研究で、チオフェン骨格を組み込んだユニークな構造を持つチオフェンベルトを効率的かつ短段階で合成しました。このチオフェンベルトの特徴として、(1) X線結晶構造解析によって、結晶構造を持ちその結晶中でユニークな柱状の分子配列パターンを有し、極性があること、(2)分光学測定により長寿命のリン光を発光すること、(3)チオフェンベルトにおける金および銅の金属表面上で異なる配列パターンがあること、を明らかにしました。

このような特徴を持つチオフェンベルトは、極性材料としての応用の可能性 を秘めているだけでなく、有機エレクトロニクス分野において広く用いられて いる縮環チオフェンを含むことから光電子デバイスとしても今後の応用が期待 されます。

論文情報

< タイトル>Thiophene-fused aromatic belts

く著者名>

Hiroki Shudo, Philipp Wiesener, Elena Kolodzeiski, Kiichi Mizukami, Daiki Imoto, Harry Mönig, Saeed Amirjalayer, Hirotoshi Sakamoto, Henning Klaasen, Bart Jan Ravoo, Nobuo Kimizuka, Akiko Yagi, Kenichiro Itami

<雑誌>

Nature Communications <DOI> 10.1038/s41467-025-55896-w

名古屋大学

補足説明

[1] チオフェン

硫黄原子を一つ含む五角形の構造(5員環という)を有する有機分子。ベンゼン環([6] 参照)と同様の π 電子数を有する 6π 電子系の芳香族化合物。

[2] 芳香族ナノベルト、ナノリング

芳香環が筒状につながった分子であり、剛直な構造を持つ。2017 年に伊丹主任研究 員らが合成したカーボンナノベルトも芳香族ナノベルトに含まれる。ナノリングは芳 香環同士が一つの単結合を介して環状に連結された分子群を指す。

[3] 縮環

環式化合物において一つの環を構成する2個以上の原子が、同時に別の環の構成原子になっているような場合を指す。チオフェンベルトの場合、ベンゼン環とチオフェン 環が2個の炭素原子(構造式では六角形と五角形の辺)を共有してつながっている。

[4] カーボンナノチューブ

ナノカーボンと呼ばれる炭素物質の一種で、ナノメートル(10 億分の 1 メートル) サイズの直径を持つ筒状の化合物。1991 年に飯島澄男博士らにより発見された。

[5] p 型有機半導体

半導体の中でも、正孔を輸送するものは p 型として知られている。有機分子を用いた p 型有機半導体は、機械的に柔軟かつ軽量な材料として注目されている。

[6] ベンゼン環

ベンゼンは炭素6原子から成る有機分子。その正六角形の炭素骨格をベンゼン環と呼 ぶ。平面構造が最も安定であり、湾曲するとひずみエネルギーを持つ。

[7] X 線結晶構造解析

単結晶に X 線を当て、その回折パターンを解析することで、単結晶中の分子構造やその配列を明らかにする手法。

[8] 双極子モーメント

硫黄原子と炭素原子のように電気陰性度が異なると、分子内に分極が生じ、これを双極子と呼ぶ。分極の度合いは双極子モーメントによって表される。

[9] 走査型トンネル顕微鏡

探針を試料に接近させて微弱なトンネル電流(トンネル効果によって流れる電流)を 検出するタイプの顕微鏡。今回のように1分子を計測することができるほどの分解能 を持つ。

国際共同研究グループ

名古屋大学 NAGOYA UNIVERSITY

理化学研究所 開拓研究本部 主任研究員 (名古屋大学 トランスフ 主任研究者)	伊丹分子創造研究室 伊丹健一郎 (イタミ・ケンイチロウ) フォーマティブ生命分子研究所(WPI-ITbM)
名古屋大学 トランスフォーマティブ生命 特任准教授 大学院理学研究科 博士後期課程学生(研究当	市分子研究所(WPI-ITbM) 八木亜樹子 (ヤギ・アキコ) 当時)
	周戸大季 (シュウド・ヒロキ)
(現 琉球大学 日本学術	振興会(JSPS)特別研究員)
博士後期課程学生	井本大貴 (イモト・ダイキ)
九州大学 大学院工学研究院 主幹教授 特任助教(研究当時) (現 理化学研究所 創発 ハイデルベルク大学(ドイツ)	君塚信夫 (キミヅカ・ノブオ) 水上輝市 (ミズカミ・キイチ) 物性科学研究センター 特別研究員)
サイエンティフィック・コン	ノピューティング学際センター
教授	サイード・アミルジャレイヤー
	(Saeed Amirjalayer)
ミュンスター大学(ドイツ) 物理学研究所 教授	ハリー・メーニット (Harry Mönig)
博士後期課程学生	フィリップ・ヴィースナー (Philipp Wiesener)
有機化学研究所	· · · · · · · · · · · · · · · · · · ·
教授	バート・ヤン・ラヴォー (Bart Jan Ravoo)
特任研究員	ヘニング・クラーセン (Henning Klaasen)
ミュンヘン工科大学(ドイツ) 博士後期課程学生	自然科学研究科 エレナ・コロジェイスキー (Elena Kolodzeiski)
京都大学 物質 - 細胞統合シス	マテム拠占(WPLiCeMS)
特定講師	坂本裕俊 (サカモト・ヒロトシ)

研究支援

本研究は、日本学術振興会(JSPS)科学研究費助成事業特別推進研究「未踏分子ナ ノカーボンの創製(研究代表者:伊丹健一郎)」、同国際共同研究加速基金(国際先導研 究)「動的元素効果デザインによる未踏分子機能の探究(研究代表者:山口茂弘、研究 分担者:八木亜樹子)」による助成を受けて行われました。

発表者・機関窓口

<発表者> ※研究内容については発表者にお問い合わせください。 理化学研究所 開拓研究本部 伊丹分子創造研究室 伊丹健一郎 (イタミ・ケンイチロウ) 主任研究員 (名古屋大学 トランスフォーマティブ生命分子研究所(WPI-ITbM) 主任研究者) 名古屋大学 トランスフォーマティブ生命分子研究所(WPI-ITbM) 特任准教授 八木亜樹子 (ヤギ・アキコ) 名古屋大学 大学院理学研究科 博士後期課程学生(研究当時) 周戸大季 (シュウド・ヒロキ) 九州大学 大学院工学研究院 主幹教授 君塚信夫 (キミヅカ・ノブオ) <機関窓口> 理化学研究所 広報室 報道担当 Tel: 050-3495-0247 Email: ex-press [at] ml.riken.jp 名古屋大学 総務部広報課 Tel: 052-558-9735 Fax: 052-788-6272 Email: nu_research [at] t.mail.nagoya-u.ac.jp 九州大学 広報課 Tel: 092-802-2130 Email: koho [at] jimu.kyushu-u.ac.jp <名古屋大学 WPI-ITbM に関する窓口> 名古屋大学 トランスフォーマティブ生命分子研究所(WPI-ITbM) リサーチプロモーションディビジョン Tel: 052-789-4999 Email: press [at] itbm.nagoya-u.ac.jp https://www.itbm.nagoya-u.ac.jp/ja/

※上記の[at]は@に置き換えてください。

