Research Results 研究成果
ポイント
概要
九州大学エネルギー研究教育機構(Q-PIT)の山崎仁丈教授と兵頭潤次特任助教は、プロトン伝導性電解質と電極界面における歪みとプロトン伝導度の関係を定量化するモデルを構築し、高性能プロトン伝導性燃料電池セルにおける電解質中のプロトン伝導度を予測することに世界で初めて成功しました。本モデルを指針とした界面ひずみの低減により、中温動作燃料電池セル性能の最大化やさらなる高性能化が期待されます。
家庭用燃料電池のコスト低減による普及に向けて、プロトン(H+)伝導性電解質注1)を用いた300~600℃の中温度域で動作する固体酸化物型燃料電池(SOFC)注2)の開発が盛んに進められています。燃料電池デバイスにおいては、デバイス内部の抵抗を低減するため、15μm程度の薄膜電解質が用いられています。燃料電池に実装されたプロトン伝導性電解質膜の抵抗値は、材料のプロトン伝導度から予測される値よりも大きくなることが世界中の研究グループから報告されてきましたが、その原因は分かっていませんでした。
本研究グループは、イットリウムを添加したジルコン酸バリウム(BaZr0.8Y0.2O3-δ)を対象とし、燃料電池における電解質と電極の接合界面に導入される格子ひずみに着目し、プロトン伝導性酸化物における圧縮ひずみとプロトン拡散係数を定量的に調べました。その結果、本材料を薄膜面内方向に2%圧縮させた場合、プロトン伝導度が10万分の1に低下することが明らかになりました。この結果をもとに、格子ひずみとプロトン伝導度の関係を定量的に示すモデルを構築することに世界で初めて成功しました。このモデルに基づき、実際の高性能燃料電池におけるプロトン伝導度を予測したところ、報告値と一致することが分かりました(図1)。これは、プロトン伝導性セラミックス燃料電池における電解質-電極界面ひずみが、報告されていた電解質における高い抵抗の原因であることを示しており、界面ひずみが小さな燃料電池セルを構成することによって燃料電池性能を最大化できることを示しています。
本研究成果は、日本時間2022年8月11日(木)に英国物理学会の国際学術誌「Journal of Physics: Energy」のオンライン速報版で公開されました。
用語解説
注1)プロトン伝導性電解質
燃料電池において、プロトン(H+)だけを選択的に通し、電子やそのほかのイオンを通さない緻密な固体。
注2)固体酸化物型燃料電池(SOFC)
固体酸化物を電解質として用いた燃料電池。SOFCは固体酸化物型燃料電池の英語名(Solid Oxide Fuel Cells)の頭文字を取った略称。様々な燃料電池の種類の中で、最も高いエネルギー変換効率を有することが知られています。700-1000℃という高い動作温度を下げることで、材料コストおよび運転コストの削減が求められています。燃料電池は水素と酸素を利用した次世代の発電システムであり、水の電気分解と逆の原理によって高効率の発電を行います。
論文情報
掲載誌:Journal of Physics: Energy
タイトル:Quantitative Evaluation of Biaxial Compressive Strain and its Impact on Proton Conduction and Diffusion in Yttrium-doped Barium Zirconate Epitaxial Thin Films
著者名:Junji Hyodo and Yoshihiro Yamazaki
DOI:10.1088/2515-7655/ac889e
研究に関するお問い合わせ先